The Times West Virginian

Community News Network

May 15, 2014

Can technology help you and your friends choose a restaurant?

NEW YORK — "Do you want to get dinner next week?" In my experience, this question inevitably leads to a long quasi-negotiation, conducted via email or text message. It usually goes something like this:

Friend 1: Sure! Do you have a place in mind?

Friend 2: Not really! I'm up for anything. Maybe we could meet in Brooklyn after work?

(At this point we've narrowed it down to a borough of 2.6 million people. Doing great!)

Friend 1: Sounds good. Are you in the mood for going someplace nice or something more low-key?

Friend 2: Hmm, I don't know. Maybe we could go with pizza to split the difference?

Friend 1: Oooh, let's do pizza. There's Franny's, Saraghina, Motorino, Roberta's;

Friend 2: Well, Roberta's has that outdoor bar area you can wait in. If the weather's nice, we can go there, and otherwise, we can do Franny's?

Because of two people's desire not to be perceived as pushy and/or their general indecisiveness, a decision that could have been made in two steps ends up taking six. And if there's a Friend 3 involved, expect to add at least another couple of steps-unless Friend 3 is vegan or deathly allergic to gluten, which usually helps narrow down the choices. (By the way, the above dialogue is based on an actual recent discussion. We went to Roberta's.)

Deciding where to eat, drink, relax and chat with friends should be a pleasure, but instead it's an engine of hesitancy and chagrin. As a result of that hesitancy and chagrin, you often end up going to the same handful of tried and true restaurants instead of branching out. What if technology could solve this problem by collecting a party's various dietary, monetary and atmospheric preferences and producing a restaurant that will delight everyone?

Ness was an app that promised to do just that. (I say "was" because it was acquired by OpenTable in February and subsequently shut down operations in order to incorporate its algorithm into OpenTable's framework.) Ness looked like the Netflix of restaurants: It invited you to rate restaurants you'd been to, then suggested other restaurants based on ratings made by people with similar preferences to yours. Taking a cue from OkCupid, Ness expressed its prediction of how much you'd like a restaurant as a "like percentage" - the higher the percentage, the stronger the recommendation. Ness' "Recommendations With Friends" feature also figured out where your preferences and those of your friends overlapped.

I decided to put Ness' algorithm to the test by recruiting colleagues to try a restaurant for the first time using the app. I made them promise that they would go to whatever place Ness recommended for us, and 14 brave co-workers signed up.

Which is where I ran into my first problem: Ness' group recommendation algorithm accommodated 10 people maximum. I split us randomly into two groups and then immediately hit my second problem: Ness could recommend a restaurant for each group, but it couldn't help us figure out what night we were all available to dine. We ended up using Doodle to find a night that worked for every member of each group.

Now for the moment of truth: I plugged in the names of the eight people in my group, chose "dinner" as our meal, and limited the geographical area to the West Village, near Slate's office. (I also limited our price range to $ or $$ - Ness' ratings go up to four dollar signs. We work in journalism, not finance.)

With all this information, I expected Ness to spit out the name of the single restaurant with the highest average "like percentage" for all eight of us. Instead, it gave me a list of restaurants; confusingly, the list changed every time I refreshed the page. The main thing that had attracted me to Ness - that it would eliminate all decision-making - turned out to be a vicious lie. I still had to make a decision!

I chose Aria Wine Bar, because it showed up high on the list every time I refreshed it, and because it seemed to have a pretty high "like percentage" for most of the eight of us. But it turned out my boss had already been there - Ness couldn't sort for novelty. I did find a pizza place on the list that no one had tried, but then an editor in my group let me know that she didn't eat wheat or dairy. Ness didn't allow people to input their dietary restrictions, either, even though dietary preferences tend to be the major determining factor when it comes to group dining.

Long story short: After three people bowed out at the last minute, five members of our group went to Aria Wine Bar. (Yes, I did a new search for recommendations for just the five of us. Ness still really wanted us to go to Aria Wine Bar.) It was hard to communicate with one another there, both because of the high volume of the dance music playing over the loudspeakers and because we were seated mere inches away from our nearest neighbors. We ordered appetizers to share and ended up with an unconscionably cold slab of mozzarella; our pasta entrées were bland at best. Afterwards, we all agreed that we would not recommend Aria Wine Bar to a friend.

So Ness did a great job of recommending a restaurant none of us would like. Instead of tailoring its recommendation to our preferences, it seemed to target the lowest common denominator among the five of us.

There's time for OpenTable to iron out some of Ness' kinks and to add some potentially helpful new features. As for me: I've gone back to the old-fashioned, six-email-negotiation technique. This technique is awkward and time-consuming, sure - but after trying Ness, I've come to see it as a necessary evil.

 

1
Text Only
Community News Network
  • Arizona's prolonged lethal injection is fourth in U.S. this year

    Arizona's execution of double-murderer Joseph Wood marked the fourth time this year that a state failed to dispatch a convict efficiently, according to the Constitution Project, a bipartisan legal group.3

    July 24, 2014

  • Police Brutality screen shot. Technology plays key part in battling police brutality (VIDEO)

    Allegations of police brutality are nothing new -- as long as there has been law enforcement, citizens have registered claims that some officers cross the line. But in the last few years, the claims of excessive force are being corroborated with new technology from cell phone cameras, police dash-cams and surveillance videos. 

    July 24, 2014 1 Photo

  • Facebook continues moneymaking trend

    Facebook seems to have figured out - for now at least - the holy grail for all media right now: how to make money selling mobile ads.

    July 24, 2014

  • Has the ipad lost its swag?

    July 24, 2014

  • Almost half of America's obese youth don't know they're obese

    The good news is that after decades of furious growth, obesity rates finally seem to be leveling off in the U.S.. The bad news is that America's youth still appear to be dangerously unaware of the problem.

    July 23, 2014

  • 072214 Diamond Llama 1.jpg Llama on the loose corralled in Missouri town

    A llama on the lam cruised Main Street Tuesday before it mistook a resident’s fenced backyard for a place to grab a meal and freshen up.

    July 22, 2014 2 Photos

  • An oncologist uses scorpion venom to locate cancer cells

    Olson, a pediatric oncologist and research scientist in Seattle, has developed a compound he calls Tumor Paint. When injected into a cancer patient, it seems to light up all the malignant cells so surgeons can easily locate and excise them.

    July 22, 2014

  • Screen Shot 2014-07-22 at 2.00.42 PM.png VIDEO: Train collides with semi truck carrying lighter fluid

    A truck driver from Washington is fortunate to be alive after driving his semi onto a set of tracks near Somerset, Ky., and being struck by a locomotive, which ignited his load of charcoal lighter fluid.

    July 22, 2014 1 Photo

  • mama.jpg What we get wrong about millennials living at home

    If the media is to be believed, America is facing a major crisis. "Kids," some age 25, 26, or even 30 years old, are living out of their childhood bedrooms and basements at alarmingly high numbers. The hand-wringing overlooks one problem: It's all overblown.

    July 22, 2014 1 Photo

  • Hospitals let patients schedule ER visits

    Three times within a week, 34-year-old Michael Granillo went to the emergency room at Northridge Hospital Medical Center in Los Angeles because of intense back pain. Each time, Granillo, who didn't have insurance, stayed for less than an hour before leaving without being seen by a doctor.

    July 21, 2014

House Ads
Featured Ads